

Pierre Auger Project Overview

Objectives
Timeline
Collaboration
Organization
Observatory Design
Status and Plans

Objectives

A high statistics study of cosmic rays above 10¹⁹ eV measuring -

Energy Spectrum

Direction

Composition

Using large air shower arrays in:

Mendoza, Argentina (construction underway)

Millard Co, Utah, USA

Auger Project Timeline

February-July 1995 Study Group – Fermilab (Design Report)

October 12-13, 1998 Founding of the Auger Collaboration

Paris

March 16, 1999 Signing of the International Agreement

- Mendoza City, Argentina

March 18, 1999 Ground breaking – Malargue, Argentina

January 2000 Beginning of construction

February 21, 2000 Deployment of the first detector

Auger Ground Breaking - Malargue Argentina March 18, 1999

Dr. M. Abbate, General Manager CNEA; Dr. A. Etchegoyen, Southern Observatory Spokesperson; Acc. V. Russo, Mayor of San Rafael; Prof. J. Cronin, Project Spokesperson; Eng. J. Rodriguez, Minister and Head of National Minister Cabinet; Dr. A. Lafalla, Governor of Mendoza; Acc. C. Jaque, Mayor of Malargüe.

First Engineering Array Surface Detector February 21, 2000

The Auger Collaboration

50 Institutions, >250 Scientists

Argentina

Armenia*

Australia

Bolivia*

Brazil

Peoples Republic of China

Czech Republic

France

Germany

Italy

Mexico

Poland

Russia

Slovenia

United Kingdom

USA

Vietnam*

Greece

^{*} associate

International Agreement Initial signing March 16, 1999

Defines a framework for the organization, management and funding required for the construction, commissioning and operation of the Pierre Auger Observatory

The Parties to the Agreement are the funding agencies or their designates.

International Agreement Content

Commitment

Organization

Project Management

Funding

Reporting

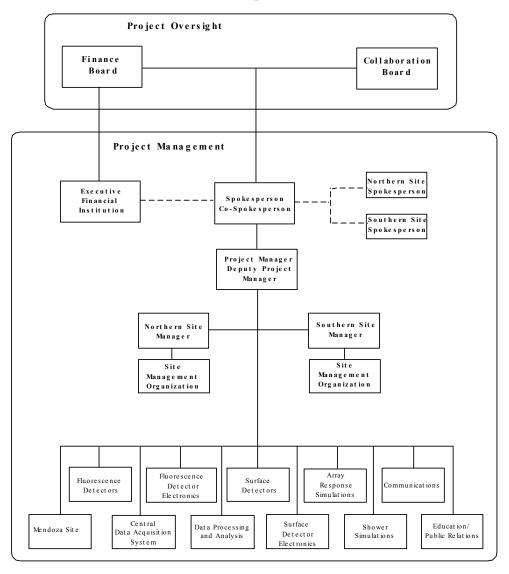
Milestones and Schedule

Data Rights

Intellectual Property

Access

Liability


Taxes and Customs

Withdrawal

Disputes

Global Organization

Revised 3/15/99

Collaboration Board

Principal Governing Body of the Collaboration (One representative per institution)

Role:

Governance

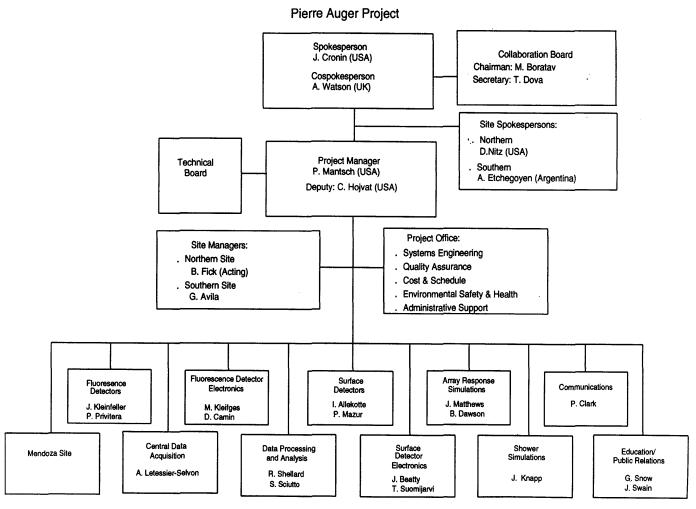
Scientific Policy

Membership

Monitor construction and operation

Finance Board

Governing Body for Finances


(Representatives of Auger Project Funding Agencies)

Role:

Provide international funding oversight Approve budgets Monitor project costs and schedule

Management Organization

Revised 03-Oct-01

The Auger Observatory A Hybrid Detector

Surface Array

1600 Water Cerenkov Detectors over 3000 km²

Fluorescence Detectors

30 telescopes in four enclosures overlooking the surface array

The Auger Observatory

Features of the two techniques

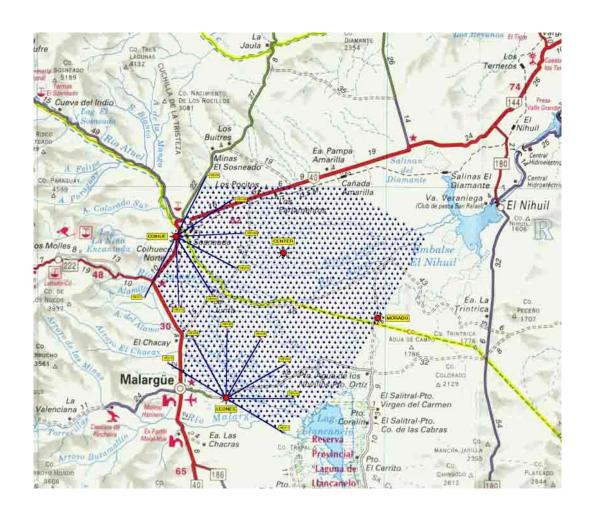
Surface Array

100% duty cycle
Uniform aperture
Simple robust detectors

Fluorescence Detector

Calorimetric energy measurement
Direct measurement of shower development

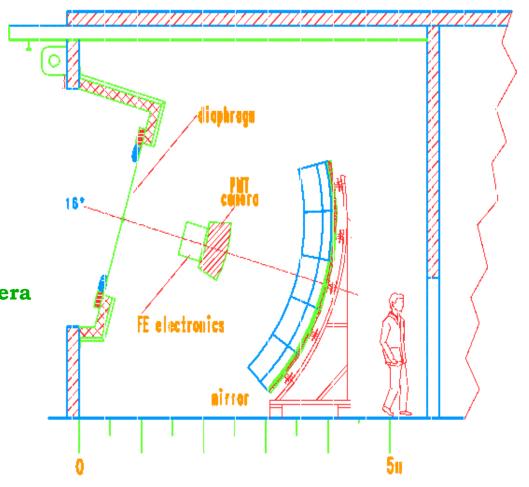
The Auger Observatory


Combines strengths of

Surface Detector Array and Fluorescence Detectors

- Independent measurement techniques allow control of systematics
- More reliable energy and angle measurement
- Primary mass measured in complementary ways

The Auger Observatory Site


Typical Surface Detector Station with local residents of the Pampa

Auger Fluorescence Detector Telescope

30 telescopes
3.4 meter mirror
440 PMTs per camera

Construction Plan

Years 2000 & 2001 (Engineering Array)

Install ~40 surface detector station array.
Install two fluorescence telescopes.
Install communications and data acquisition.
Complete Auger Campus.

Year 2002 - 2004

Full production and deployment Transition to data taking

Accomplishments

January 2000 Engineering Array started

February 21, 2000 First EA tank deployed

May 23, 2001 First Fluorescence events

August 2, 2001 First array shower recorded

Status and Plans

- The Engineering Array is nearly finished
- Construction of the full observatory will begin in 2002

Fluorescence Detector - First Light

Expected numbers of events Based on AGASA data

For one year at one 3000km² site Zenith angle < 60 deg

Surface Array (only) Hybrid (SD + one or more FD)

> 6x10^17 eV	0	approx	45000
> 10^18 eV	0		30000
> 3x10^18 eV	15000		4700
> 10^19 eV	5150		515
> 2x10^19 eV	1590		159
> 5x10^19 eV	490		49
> 10^20 eV	103		10
> 2x10^20 eV	32		3
> 5x10^20 eV	10		1

FD rates assume a coincidence of 2 tanks with 4 VEM and 10% duty cycle SD rates assume a coincidence of 5 tanks with 4 VEM each.